<var id="sg2jg"></var><nobr id="sg2jg"></nobr><optgroup id="sg2jg"><del id="sg2jg"></del></optgroup>
<thead id="sg2jg"></thead>

<object id="sg2jg"><option id="sg2jg"></option></object>
<i id="sg2jg"></i>
<i id="sg2jg"></i>
<delect id="sg2jg"><option id="sg2jg"></option></delect><optgroup id="sg2jg"><del id="sg2jg"></del></optgroup>
<i id="sg2jg"></i>
<font id="sg2jg"></font>
<object id="sg2jg"><option id="sg2jg"><small id="sg2jg"></small></option></object>

      <object id="sg2jg"></object>
      <thead id="sg2jg"></thead>
      首頁 > 通知公告 > 正文
      J. Scott Tyo與Xiuping Jia學術報告通知(一)

      報告題目:Display of Polarization Data for Remote Sensing Tasks



      人:J. SCOTT TYO

      報告摘要:Polarization data has emerged as a complementary strategy to spectral imaging for many remote sensing tasks. While multispectral and hyperspectral images provide details about the material makeup of a scene, polarization tends to provide data on the shape, orientation, and surface quality of objects. In this talk, we will discuss the basics of imaging polarimetry and many applications for which polarization sensing is important. The talk will continue to present recent research on the display of polarization data. We discuss new strategies for mapping polarization data into color that are designed to accomplish particular tasks such as classification, target detection, and shape recognition.

      報告人簡介:J. Scott Tyo教授,國際著名偏振光學專家,澳大利亞新南威爾士大學工程與信息技術學院院長,國際電氣和電子工程師協會(IEEE)會士,美國光學學會(OSA)會士,國際光學工程學會(SPIE)會士。曾任美國亞利桑那大學(University of Arizona)光學與電子計算機工程教授,2014年被授予SPIE GG Stokes獎。在國際著名學術期刊Optics Letters、Optics Express、Applied Optics、IEEE Trans. AntennasPropagate、IEEE Trans. Geosci.、Remote Sens等發表學術研究論文200余篇,被國際同行他引2000余次,單篇最高引用600余次。


      報告題目:Multisensor data integration for maximizing information retrieval



      人:Xiuping Jia

      報告摘要:With the recent advances in remote sensing technologies for Earth Observation, satellite images from multiple sensors are widely available. Examples include multispectral/hyperspectral images, LiDAR and SAR data, as well as night-time imagery. They provide complementary information for a better understanding of Earth’s features. Night-time imagery can especially reflect human activities, and together with daytime data, can provide improved monitoring of urbanization. However, information extraction from such big spatial data is a challenging job. Traditional machine learning methods may have limited performance due to the increased data dimensionality and the multimodal characteristics.

      In this talk, multisource data registration, feature selection and feature extraction techniques will be presented and discussed. One class oriented classification scheme will be introduced and discussed.

      報告人簡介:Xiuping Jia博士,國際著名遙感數據分析、高光譜圖像分類專家,澳大利亞新南威爾士大學工程與信息技術學院博導,哈爾濱工程大學、西安電子科技大學、中國石油大學的客座教授,中國農業信息技術工程技術研究中心兼職研究員,IEEE GRSS Symposium Award Committee主席,《遙感數字圖像分析》(Springer-Verlag, 3rd(1999))第四版著者,國際著名期刊IEEE Transactions on Geoscience and Remote Sensing副主編,Journal of Soils and Sediments編輯,2018年獲多蘿西綠色獎。主要從事遙感圖像處理和空間數據分析領域的研究,發表學術論文190余篇。

      地址:陜西省西安市咸寧西路28號      郵編:710049    版權所有:西安交通大學

      站點建設與維護: 網絡信息中心        陜ICP備06008037號